

**CITY OF NORFOLK DEPARTMENT OF UTILITIES
DESIGN AND CONSTRUCTION STANDARDS**

Appendix F5 – Wastewater Pump Stations Odor Control Assessment Guidelines

This document is meant to serve as a guidance document for odor control assessments performed on City of Norfolk Wastewater Pump Stations. The procedures laid out in this document are not required to be followed, however, the information presented has been vetted by the Department and deemed to be a satisfactory method for determining which odor control technology best suits each specific pump station condition.

The four gas-phase odor control technologies mentioned in this document are technologies that the Department is familiar with and the Engineer should consider each technology for use at the subject pump station. This document is not meant to limit the Engineer in his or her evaluation, but is intended to be used as a basis for determining which technology best suits the Department's needs. The Engineer should consider alternate technologies that are not listed below, but are current in the industry and found to be suitable for treating odors at wastewater pump stations. It is the responsibility of the Engineer to determine if additional testing or more stringent sizing criteria should be used based on individual project specifics.

Pre-Design Testing

Existing Facilities

Hydrogen Sulfide Monitoring

Odor loggers (field odor monitoring tools that measure hydrogen sulfide concentrations in ambient air) should be used to determine the hydrogen sulfide (H₂S) loading in wastewater pumping stations and collection facilities. The odor logger should be hung inside the wet well or within the headspace of the manhole of interest at an elevation above the high-water level.

The odor logger should continuously measure the ambient H₂S concentration within these facilities, providing a measurement every 1 to 5 minutes, depending on the odor logger model and the range of measurable concentration selected.

The measured H₂S concentrations should be recorded by the odor logger in a data file that can be downloaded onto a personal computer and analyzed. The field odor emission data should be exported in both graphical and tabular format and analyzed for the entire monitoring period and in shorter increments, as appropriate for identifying trends in H₂S concentrations in the monitored space.

The following table list the standards for H₂S monitoring protocols for wastewater pump stations and collection facilities. For anticipated H₂S concentrations of less than 2 parts per million (ppm) on a continuous basis, a low-range odor logger should be used. H₂S sampling shall occur in the summer months to capture the yearly peak H₂S concentrations.

Hydrogen Sulfide Monitoring Standards			
Odor Source	OdaLog Type	Install Location	Minimum Duration of Monitoring
Pump Station Wet Well	Standard ^a	In the wet well at least 1 ft. above the high water level	2 weeks ^b
Pump Station Fence Line	Low-Range	Typically hung on fence, tree, or an installed pole or post	1 week
Manhole	Standard ^a	Beneath the manhole covers (may be installed in multiple manholes to ascertain H ₂ S variations)	2 weeks ^b

^a OdaLog measurement range dependent on known or project H₂S concentration range.

^b 1 week for expected minimal H₂S variation in wet well headspace; 2 weeks for expected greater H₂S variation in wet well headspace and/or significant weekend changes in flow or sulfide loading.

Following collection of the H₂S data plots, the following data should be identified and utilized in subsequent odor study reports and designs for odor control improvements:

- Average H₂S concentration throughout the monitoring period
- Peak H₂S concentration throughout the monitoring period
- Average daily maximum H₂S concentration (average of the peak H₂S concentrations for each full day of monitoring)
- Times of day or night where peak H₂S concentrations occur (identify established trends as repeated three or more times over the course of a week)

Liquid-Phase Sampling

Liquid-phase sulfide testing may be conducted to identify the potential for odor emissions in the form of H₂S from a wastewater pumping facility. When this testing is specified, liquid wastewater samples should be drawn from multiple locations along the collection system and pumping facilities and tested in the field for total and dissolved sulfides using a LaMotte test kit (or approved equal), as well as pH and biological oxygen demand (BOD). Liquid-phase testing shall occur during the summer months to capture the yearly peak sulfide concentrations.

The following liquid-phase analyses listed in the table below should be conducted for samples collected at wastewater pump stations and collection facilities. Other liquid phase properties that may in some cases be measured are dissolved oxygen, temperature, sulfate, and alkalinity:

Liquid-Phase Analysis Standards						
Odor Source	Number of Samples	Test Type	Tests Conducted			
			Total Sulfides	Dissolved Sulfides	pH	Biochemical Oxygen Demand (BOD)
Pump Station Wet Well	3 ^a	Grab	X	X	X	X
Manhole	3 ^a	Grab	X	X	X	X

^a Sample during peak and average H₂S conditions (according to reviewed OdaLog results)

New Facilities

The selection of odor control technologies for new facilities should be determined by conducting tests at a comparable existing wastewater pump station and applying the data to the study and design of the new facility.

If no comparable wastewater pump station exists, wastewater samples should be collected from a location where the wastewater will be ultimately conveyed to the new facility and tests shall be conducted on those samples. Liquid-phase sampling as described above is applicable and mathematical calculations should be used with supporting empirical data to extrapolate measured liquid-phase sulfide data to arrive at theoretical corresponding gas-phase H₂S concentrations.

Once the theoretical H₂S concentrations are determined, the appropriate odor control technology should be selected and a footprint of the selected technology (foundation, chemical pumps for liquid-phase systems, fans for gas-phase systems, etc.) should be incorporated into the pump station design. Upon completion of construction of the new facility, additional gas-phase and liquid-phase testing should be conducted to substantiate the selected odor control technology and verify system size, air flow rates, etc.

Technology Selection

Air Flow Quantification

The required air flow rate of the odor control system is based on generating a negative air pressure within the wet well. The following calculation can be used to determine the required air flow rate:

Required air flow rate = 1 cfm per sf of wet well surface area + air being dragged into the wet well by peak influent flow or 6 air changes per hour, whichever is greater.

Technology Selection

Each of the technologies explored should be evaluated based on several criteria, including treatment capabilities, footprint, maintenance requirements, sustainability, and capital and operational costs. Decisions on project implementation should be based on a combination of life-cycle cost analyses and non-economic criteria and considerations.

As an initial step in screening the four technologies mentioned below, a general rule-of-thumb determination summarized in the table below should be considered. The table identifies preferred technologies given the projected inlet H₂S concentration and airflow rate to be treated, in cubic feet per minute (cfm).

Odor Control Technologies Selection: Rule-Of-Thumb Criteria			
Parameter	Low H ₂ S Concentration <10 ppmv	Medium H ₂ S Concentration 10-100 ppmv	High H ₂ S Concentration >100 ppmv
Low Flow ≤10,000 cfm	Carbon Absorber	Carbon Absorber Biofilter	Biofilter
High Flow >10,000 cfm	Carbon Absorber	Biofilter Biotrickling Filter Chemical Scrubber	Biofilter Biotrickling Filter Chemical Scrubber

System Sizing

The following are design parameters used for sizing odor control technology applications during preliminary and detailed design phases. Note that any of the values in the tables may be adjusted in the field to optimize conditions under actual loads.

Chemical Scrubber Design Criteria			
Parameter	Units	Value	Notes
Gas flow loading	lb./hr./ft ²	1,800-2,250	Typical range per WEF MOP No. 25
Gas velocity	ft./min	300-500	Typical range per WEF MOP No. 25
Liquid flow rate	lb./hr./ft ²	3,000-4,000	Typical range per WEF MOP No. 25
Gas-liquid contact time	Sec	1-2	Typical range for hypochlorite/caustic scrubbers
Packing height	Ft	5-10	General range in to reduce pressure drop
pH setpoint	-	9-11	Selection dependent on anticipated H ₂ S load to scrubber
ORP setpoint	mV	600	Typical minimum for sufficient oxidation of H ₂ S to non-odorous compounds
Blowdown rate	%	1-2	Percentage of recirculation rate

Biotrickling Filter Design Criteria			
Parameter	Units	Value	Notes
Media contact time	sec	5-15	Will vary depending on odor/H ₂ S load and selected manufacturer
Media depth	ft.	10-20	Will vary depending on manufacturer preference
Makeup water	gpm/ft ³	0.0015	Standard value
Gas velocity	ft./min	50-70	Typical range
Liquid loading rate	gpm/ft ²	1-2	Standard range (may be higher for non-recirculating systems)
Maximum pressure drop	inches of water column	4	Typical value used by manufacturers (inlet flange to outlet flange of vessel)
Blowdown rate	%	1-2	Percentage of recirculation rate

Biofilter Design Criteria			
Parameter	Units	Value	Notes
Empty bed residence time (EBRT): organic media	sec	60	Minimum value typically recommended
EBRT: engineered media	sec	30-45	Depending on manufacturer and odor load
EBRT: soil media	sec	90	Typical for Bohn biofilter media
Media depth	ft.	4-8	Higher values acceptable for engineered media; lower values typical for organic media
Projected media life: organic media	yr.	3-5	Based on previous experience
Projected media life: engineered media	yr.	10-20	Provided in previous designs from biofilter manufacturer (warrantied against compaction)
Length: width ratio	-	2:1 to 3:1	Appropriate for evenly distributed air loading to plenum
Pressure drop through media	Inches of water column	0.75-1	Common range given by engineered media manufacturers
Inlet air relative humidity	%	95	Minimum for no negative impacts on media (drying)
Irrigation rate	gpm/ft ³	0.0015	Standard value for organic media (alternate values will be provided by manufacturers for engineered media)

Activated Carbon Design Criteria			
Parameter	Units	Value	Notes
Face velocity	ft./min	60-70	Industry standard, provided in WEF MOP No. 25
Bed depth	Ft	3	Typical maximum to avoid excessive pressure drop
Foul air relative humidity	%	50	Maximum given in literature for minimal impact on pore spaces
Media moisture content (by weight)	%	3	Maximum typically specified
H ₂ S breakthrough capacity (virgin carbon)	g H ₂ S adsorbed / g carbon	0.04	Minimum typically specified
H ₂ S breakthrough capacity (high-capacity carbon)	g H ₂ S adsorbed / g carbon	0.4	Minimum typically specified
Media pressure drop	In	5	Maximum specified for 3-ft beds

Treatment Performance

The following tables list the minimum removal efficiency requirements for each specific treatment technology. In each application the treatment requirements must be checked with manufacturers of the equipment to assure that the technology will be able to meet the specified level of removal.

Removal Efficiency Requirements		
Chemical Scrubbing		
Odor Parameter	Treatment Requirement	Inlet Loading Condition
H ₂ S Concentration	99.9 percent removal	≥ 50 ppmv
H ₂ S Concentration	≤ 0.050 ppmv	< 50 ppmv
Odor Detection Threshold	90 percent removal	≥ 3,000 D/T
Odor Detection Threshold	≤ 300 D/T	< 3,000 D/T

Removal Efficiency Requirements		
Biotrickling Filter		
Odor Parameter	Treatment Requirement	Inlet Loading Condition
H ₂ S Concentration	99 percent removal	≥ 5 ppmv
H ₂ S Concentration	≤ 0.050 ppmv	< 5 ppmv
Odor Detection Threshold	70 percent removal	≥ 1,000 D/T
Odor Detection Threshold	≤ 300 D/T	< 1,000 D/T

Efficiency Requirements		
Biofilter		
Odor Parameter	Treatment Requirement	Inlet Loading Condition
H ₂ S Concentration	99 percent removal	≥ 5 ppmv
H ₂ S Concentration	≤ 0.050 ppmv	< 5 ppmv
Odor Detection Threshold	70 percent removal	≥ 1,000 D/T
Odor Detection Threshold	≤ 300 D/T	< 1,000 D/T

Removal Efficiency Requirements		
Activated Carbon		
Odor Parameter	Treatment Requirement	Inlet Loading Condition
H ₂ S Concentration	99.9 percent removal	≥ 50 ppmv
H ₂ S Concentration	≤ 0.050 ppmv	< 50 ppmv
Odor Detection Threshold	90 percent removal	≥ 3,000 D/T
Odor Detection Threshold	≤ 300 D/T	< 3,000 D/T

Operations and Maintenance Manual

An Operations and Maintenance (O&M) manual should be provided to the City for each new odor control facility installation. The engineer should consider the following activities to be included in the O&M manual.

Suggested Maintenance Requirements for Odor Control Systems		
Odor Control Technology	Maintenance Activity	Frequency
Chemical Scrubbing	Acid cleaning of nozzles	Quarterly
	Chemical metering pumps maintenance	Semi-annual
	Chemical metering pump instrumentation	Monthly
	Recirculation pumps: verify discharge pressure	Quarterly
	Recirculation pumps: motor maintenance	Semi-annual (replace motors every 5 years)
	Fan maintenance	Quarterly
	pH/ORP probe testing and calibration	Weekly
Biotrickling Filters	Recirculation pump routine maintenance	Semi-annual
	Recirculation pump instrumentation	Monthly
	Recirculation pumps: verify discharge pressure	Quarterly
	Recirculation pumps: motor maintenance	Semi-annual (replace motors every 5 years)
	Pressure gages: routine maintenance	Quarterly
	Nutrient feed system inspection	Weekly
	Fan maintenance	Quarterly
	pH probe testing and calibration	Weekly
Biofilters	Irrigation metering pump routine maintenance	Semi-annual
	Irrigation metering pump instrumentation	Monthly
	Pressure gages: routine maintenance	Quarterly
	Humidification chamber routine maintenance	Semi-annual
	Weed removal	Weekly (less frequent for engineered and soil media)
	Media replacement	Every 3-5 years (organic media only)
	Fan maintenance	Quarterly
Activated Carbon	Inspect instrumentation (pressure gages)	Monthly
	Media testing (for breakthrough) using field probes or sending samples to laboratory	Varies (depending on H ₂ S and odor loading)
	Media replacement	Varies (depending on H ₂ S and odor loading)
	Fan maintenance	Quarterly