Table of Contents

History, Legacies and Building the Future 3
Purpose 4
Overview 4
Plan Options 5
Elevation Options 11
Site Placement 18
Window Options 22
Exterior Materials 25
Resilient Construction 27
& Sustainable Design
History, Legacies and Building the Future

BRUCE’S PARK: HISTORY AS A GUIDE TO A SUSTAINABLE FUTURE

Bruce’s Park was started in 1901 by the Bruce Park Company of Norfolk, Virginia. The area at the time was a part of Norfolk County, now the City of Chesapeake. City records from 1902-1909 show African American families moving into the neighborhood. By 1910, the neighborhood development had expanded and by 1921, newspaper articles describe Bruce’s Park as a “small colored settlement of thrifty folks, many of whom own their own homes, and are peaceful, hard workers.” In 1923, the neighborhood and area became part of the City through annexation. At this time, the New Journal and Guide described the settlement of Bruce’s Park as an asset to the City of Norfolk. “Each of these sections is the outgrowth of the ambition of race members for homeownership. Under the urge to own their own homes, the families moved into them when they were cheap country property, and it may be said that 75 per cent of the families are home owners or home buyers. They are tax payers, stable citizens and hard working people...Each settlement is dotted with its own business houses, such as small stores and shops. Many of these houses are beautiful and pretentious, some of them occupy two and three lots with some public improvements...Property values there are sure to rise.” In 1925, the National Community League of Bruce’s Park was created.

Newspaper articles from 1953 describe the residents of Bruce’s Park (also referred to as Barraud Park at the time) protesting the rezoning of a portion of the neighborhood to commercial, demonstrating the community’s strong activism and desire to retain the residential character of the area. When the Globe Iron facility was developed in 1958, it bifurcated Bruce’s Park and Barraud Park/Cottage Heights. Where Globe Iron sits today, recreation fields, a retail store, water reservoir and two automobile garages once stood. Through the recently adopted Broad Creek Refresh Plan: Building a Community of Choice, the community established a clear vision to encourage compatible infill residential development in Bruce’s Park and redevelop the Globe Iron sites into a mixed residential community (including Missing Middle Housing) with associated amenities, parks, and open spaces. With the opportunity to redevelop the now shuttered Globe Iron site, there is the chance to lift up the entire neighborhood and reconnect areas that have been divided by industrial uses.

Purpose

The Plan Book is intended to make it easy for potential homeowners to build their dream home in the Bruce’s Park neighborhood. It follows the success of Chapter 1 of the Traditional Neighborhood Plan Book and the new homes that have been built in Olde Huntersville. This is the second City of Norfolk initiative to give residents tools to make building affordable and well-designed homes on narrow lots possible without going through the rigorous and time-consuming Non-Standard Lot Review process. The Plan Book also provides opportunities for renters to become owners in the neighborhood, and makes a way for the neighborhood to grow from within. The houses shown on these pages are beautiful, customizable, market-rate homes that fit into the architectural character of the neighborhood. There are three, four, and five-bedroom plans with options for accessible bedrooms, perfect for aging-in-place.

Overview

The Plan Book should be used by existing Bruce’s Park residents, potential homeowners interested in building and making their home in the neighborhood, and builders who are invested in contributing to the success of the beautiful, historic neighborhood of Bruce’s Park.

Once you have chosen your Plan and Elevation options from the Plan Book, head over to the City of Norfolk Development Services Center located on the first floor of City Hall at 810 Union Street, Norfolk, VA 23510. If you’d like to call ahead to ask questions, you can reach a Planner at (757) 664-4752 or planning@norfolk.gov. Once you’ve arrived at Development Services, let someone know you’d like to build a house from the Bruce’s Park Plan Book and give them the plan number. They will pull a full set of approved, signed and sealed plans for you. It’s best to have your builder/contractor fill out the permit. As the property owner, you may choose to perform the work and obtain the permit yourself but you will need to submit an affidavit accepting responsibility for all work performed under the permit. Be sure to go to www.norfolk.gov to find out about inspections, fences, etc.
30 foot-long House - 3 Bedrooms
Design No. 30.A

First Floor Plan
Second Floor Plan

40 foot-long House - 3 Bedrooms
Design No. 40.A

First Floor Plan
Second Floor Plan
40 foot-long House - 4 Bedrooms (1 first floor accessible)
Design No. 40.B

50 foot-long House - 4 Bedrooms
Design No. 50.A
50 foot-long House - 5 Bedrooms (1 first floor accessible)

Design No. 50.B

First Floor Plan
Second Floor Plan

ELEVATION OPTIONS
2-Story Gable Roof with Shed Roof Porch

2-Story Gable Roof with Shed Roof Porch
2-Story Gable Roof with Hipped Roof Porch

2-Story Gable Roof with Shed Roof Porch
1-Story Cottage with Hipped Roof Porch

1-Story Cottage with Hipped Roof Porch
SITE PLACEMENT
MATERIALS / DETAILS

APPROPRIATE WINDOW MATERIALS

Wood, aluminum clad, vinyl clad, fiberglass,

Modern and contemporary designs should make use of contemporary windows such as aluminum and steel.

Shutters, fixed or operable, should align with the edge of the window frame, and be used to cover half of the window opening. Shutter dogs hold shutters open.

Raised trim should surround brick lintels. Brick lintels can be as simple as a single soldier course supported by a steel lintel behind. Other appropriate brick lintels include arches and jack arches. Brick sills are typically a Brick lintel and sill made of stone, cast stone, concrete, or wood. Lintel should extend at least 4" beyond the edge of the window frame.

Window Types

EXTERIOR MATERIALS
Allowable Materials
note: indicates material only; color is up to the individual owner/builder

Roof

Architectural Shingles/ Slate Shingles
Cement or Terra Cotta Shingles
Standing Seam

Cladding/Veneer - the following materials may all be used together (for example, brick base with siding at the first floor and shingles at the second floor)

Brick
Cementitious Siding/ Painted Cedar Siding
Cementitious Shingles Painted Cedar Shingles

Base

Brick - must be used at the front porch base
Stucco/Parged finish - may be used around the remaining building perimeter

RESILIENT CONSTRUCTION & SUSTAINABLE DESIGN
Resilient Construction
note: indicates material only; color is up to the individual owner/builder

ACCESSIBILITY — ADA & UNIVERSAL DESIGN
Designing for accessibility ensures that buildings are usable throughout the life of the occupant. Buildings must be designed and constructed in accordance with ADA Guidelines. They should also be designed to allow occupants to recover from injuries, age gracefully, or enjoy visits from friends and family with disabilities.

TOTAL COST OF OWNERSHIP — INSULATION
Effective insulation installation at the time of construction is one of the best ways to decrease the cost of ownership or tenancy for occupants of the building by reducing their monthly energy costs. All buildings should be framed with a minimum of 6 inch exterior wall framing to provide a cavity deep enough for effective insulation. Roof framing should be a minimum of 12 inches deep for insulation and an air gap at the underside of the roof sheathing. Insulating elevated slabs, foundation walls, or the underside of the lowest floor, depending on the foundation type, also provide significant energy savings to the building occupants.

TOTAL COST OF OWNERSHIP — SOLAR
There are two ways to decrease cost of ownership when it comes to solar power:
1. Install solar panels at the time of construction. With the right sized system, solar power can reduce electricity costs for the occupants, and potentially pay back the owner for excess energy sold to the electric utility company. Additionally, solar power can be an effective form of resiliency should the electrical service be disrupted for an extended period of time due to storms or other outages.
2. Pre-wire the building for the installation of solar power at a later date. This is a very inexpensive step to take during construction, but can be prohibitively expensive to install after the building is completed and occupied. If a solar power system is not affordable at the time of construction, it can be added on to the building later, but will be less expensive to install.

Sustainable Design

FLOOD RESISTANCE — ELEVATION
The most effective means of flood protection is elevating living spaces out of the flood plain. While all designated flood plains have a specific minimum elevation requirement, the majority of flood damage occurs in places which are not in a designated flood plain. For this reason, all residential buildings in Norfolk must be elevated a minimum amount regardless of whether or not they are located in a flood plain.

FLOOD RESISTANCE — RETENTION
Providing a rainwater storage on individual properties reduces the risk of flood damage in the entire City of Norfolk. Storing rainwater reduces the amount that the city’s pipes need to drain in the event of a storm. This stored water, depending on the containment method, can then be used to water plants or wash vehicles, reducing the amount of city water used on each property.

Additionally, the City of Norfolk Public Works Department may offer a reduction in storm water fees as an incentive. For more information on rain capture, contact the Public Works Department.

Types of storm water retention include:
1. Rain Barrel or Cistern storage: Providing a Rain Barrel or a Cistern (container larger than a rain barrel) will allow homeowners to use rainwater instead of city water for certain tasks. Rainwater is not as filtered, so tasks should be limited to washing appropriate items or watering plants.
2. Tree Preservation and Planting: Trees absorb groundwater and release it into the atmosphere, reducing the risk of flooding. A mature oak, for example, can store upwards of 200 gallons (6+ bathtubs) daily. It is important to not damage mature trees during the construction process so that they can absorb water and cleanse the air.
3. Rain Garden: A Rain Garden is a miniature version of tree planting, absorbing water that may otherwise flood the property. A rain garden is a collection of plants that can absorb water and beautify a yard. Each property is a unique case, and a professional should be consulted to ensure the correct species of plants are selected.

This home was built away from the existing trees on the site. The trees will help absorb groundwater, reducing the risk of flooding from heavy rain events.